PROJECT PN-III-P1-1.1-TE-2016-0268
SHAPE PHASE TRANSITIONS IN ATOMIC NUCLEI: FROM CRITICAL POINTS TO SHAPE COEXISTENCE (SPTANCPSC)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TRANZIÈšII DE FAZÄ‚ ÎN FORMA NUCLEELOR ATOMICE: DE LA PUNCTE CRITICE LA COEXISTENÈšA DE FORME (ROM)
Supported by CNCS-UEFISCDI contract no 50/2018
Hosted by "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Bucharest
Start date 2 May 2018
ABSTRACT
-
Evolution of nuclear shape and its associated observables are studied by means of a Bohr-Mottelson model with quantum potentials appropriate for shape phase transition and shape coexistence phenomena. The lowest order potential which obeys the Bohr symmetry and covers all deformation regimes, including the transitional one where shape coexistence resides, is the sextic oscillator potential. The project undertakes the realization of a theoretical program which would be able to solve the Hamiltonian for a general sextic potential in different regimes of the Bohr-Mottelson model. The ultimate scope of the project is to provide a universal diagonalization basis for solving the Bohr Hamiltonian with a potential containing higher order quadrupole invariants with mixed dependence on beta and gamma variables. The employed diagonalization basis is constructed by incorporating the Euclidean Dynamical Symmetry which dominates the critical point solutions. Extensive numerical applications will be performed on numerous nuclei centered around the region of rare earth isotopes with the scope of identification of critical behaviour and shape coexistence represented by potentials with degenerate and respectively non-degenerate spherical and deformed minima. The implications of having coexisting deformation minima will be thoroughly analysed by means of deformation probability density distribution and its effect on the spectral features. On the other hand, the state depending evolution of shape in a particular nucleus, gives rise to another kind of shape coexistence found in nuclei near closed shells. The description of this type of collective excitations is tackled by considering non-local energy-dependent potentials within Bohr-Mottelson model, which lead to exactly solvable analytical solutions. This formalism provides a fully geometrical alternative for the qualitative and quantitative description of this phenomenon.
​
-
EvoluÈ›ia formei nucleare È™i a observabilelor asociate acesteia este studiată în cadrul modelului Bohr-Mottelson cu potenÈ›iale cuantice potrivite pentru fenomenele de tranziÈ›ie de fază È™i coexistenÈ›a de forme. PotenÈ›ialul de ordin cel mai mic ce satisface simetria Bohr È™i acoperă toate regimurile de deformare, inclusiv cel tranziÈ›ional asociat coexistenÈ›ei de forme este oscilatorul sextic. Proiectul îÈ™i propune realizarea unui program teoretic ce ar fi capabil să rezolve Hamiltonianul pentru un potenÈ›ial sextic general în diferite regimuri ale modelului Bohr-Mottelson. Scopul fundamental al proiectului este de a furniza o bază de diagonalizare universală pentru rezolvarea Hamiltonianului Bohr cu un potenÈ›ial ce conÈ›ine invarianÈ›i cvadrupolari de ordin superior cu o dependență mixtă de variabilele beta È™i gama. ConstrucÈ›ia bazei de diagonalizare este bazată pe încorporarea simetriei dinamice euclidiene ce domină soluÈ›iile din puncte critice. AplicaÈ›ii numerice extensive vor fi efectuate pentru numeroase nuclee localizate în jurul regiunii izotopilor de pamânturi rare, cu scopul identificării comportării critice È™i coexistenÈ›ei de forme reprezentate de potenÈ›iale cu minime sferice È™i deformate degenerate È™i respectiv nedegenerate. ImplicaÈ›iile coexistenÈ›ei de minime în deformare vor fi atent analizate prin intermediul distribuÈ›iei densității de probabilitate a deformării È™i a efectului său asupra trăsăturilor spectrale. Pe de altă parte, evoluÈ›ia formei ca funcÈ›ie de stare într-un nucleu dat, conduce la un alt tip de coexistență a formelor întâlnit în apropierea păturilor închise. Descrierea acestui tip de excitaÈ›ii colective este abordată considerând potenÈ›iale ne-locale dependente de energie în cadrul modelului Bohr-Mottelson, care conduc la soluÈ›ii analitice exact solubile. Acest formalism oferă o alternativă complet geometrică pentru descrierea calitativă È™i cantitativă a acestui fenomen.
PROJECT TEAM
Radu Budaca (Project Director)
Petrica Buganu
Andreea-Ioana Budaca
OBJECTIVES
Construction of an algebraic collective model based on a generalised method for solving Bohr Hamiltonian with a most general potential in shape variables allowing multiple deformation minima.
Development of analytically solvable models based on parametrized solutions of the Bohr Hamiltonian with energy dependent potentials for a fully geometric description of the shape coexistence in nuclei positioned near proton and neutron closed shells Z, N=50.
PUBLICATIONS
Updated March 2020
-
A. I. Budaca and R. Budaca, Triaxiality and state-dependent properties of Xe isotopes, Physical Review C 101, 064318 (2020).
-
P. Buganu, R. Budaca, M. Chabab, A. Lahbas, and M. Oulne, Quasi-exact solutions for the Bohr Hamiltonian
with sextic oscillator potential, Journal of Physics: Conference Series 1555, 012012 (2020). -
R. Budaca, Semiclassical description of wobbling and chiral modes in triaxial nuclei, Journal of Physics:
Conference Series 1555, 012013 (2020). -
A. Lahbas, P. Buganu, and R. Budaca, Quasi-exact description of the γ-unstable shape phase transition, Modern Physics Letters A 35, 2050085 (2020).
-
​R. Budaca, Chiral Bands with Rigid Quasiparticle Alignments, Bulgarian Journal of Physics 46, 415 (2019).
-
R. Budaca, A. I. Budaca, and P. Buganu, Application of the Bohr Hamiltonian with a
double-well sextic potential to collective states in Mo isotopes, Journal of Physics G: Nuclear and Particle Physics 46, 125102 (2019). -
R. Budaca and P. Buganu, Comment on “Elimination of degeneracy in the γ-unstable Bohr Hamiltonian in the presence of an extended sextic potential", Physical Review C 100, 049801 (2019).
-
R. Budaca, Role of triaxiality in the structure of chiral partner bands, Physics Letters B, 797, 134853 (2019).
-
R. Budaca, P. Buganu, and A. I. Budaca, Geometrical model description of shape coexistence in Se isotopes, Nuclear Physics A, 990, 137 (2019).
-
A. I. Budaca and R. Budaca, Description of critical point nuclei within an energy dependent geometric model, The European Physical Journal Plus 134, 145 (2019).
-
P. Buganu, R. Budaca, and A. I. Budaca, Bohr Hamiltonian with a potential having spherical and deformed minima at the same depth, EPJ Web of Conference 194, 01007 (2018).
-
R. Budaca and A. I. Budaca, Coexistence, mixing and fluctuation of nuclear shapes, EPL 123, 42001 (2018).
-
R. Budaca, Semiclassical description of chiral geometry in triaxial nuclei, Physical Review C 98, 014303
(2018).
CONFERENCE TALKS
Updated March 2020
-
Chiral bands with rigid quasiparticle alignments, R. Budaca, InternationalWorkshop ”Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects” (SDANCA-19), October 3-5, 2019, Sofia, Bulgaria.
-
Quasi-exact solutions for the Bohr Hamiltonian with sextic oscillator potential, P. Buganu, R. Budaca, M. Chabab, A. Lahbas, and M. Oulne, XXIII InternationalSchool on Nuclear Physics, Neutron Physics and Applications, September 22-28, 2019, Varna, Bulgaria.
-
Semiclassical description of wobbling and chiral modes in triaxial nuclei, R. Budaca, XXIII International
School on Nuclear Physics, Neutron Physics and Applications, September 22-28, 2019, Varna, Bulgaria. -
Chiral and wobbling vibrations in triaxial nuclei: a semiclassical approach, R. Budaca, XVII Workshop on Nuclear Physics (WONP2019), April 1-5, 2019, Havana, Cuba.
-
Shape coexistence and mixing from a collective model perspective, A. I. Budaca and R. Budaca, XVII Workshop on Nuclear Physics (WONP2019), April 1-5, 2019, Havana, Cuba.
-
Wobbling phase transition in odd mass nuclei, R. Budaca, XI. International Conference on Nuclear Structure Properties (NSP2018), September 12-14, 2018, Trabzon, Turkey.
-
Proton emission with a generalized electrostatic barrier, A. I. Budaca and R. Budaca, XI. International Conference on Nuclear Structure Properties (NSP2018), September 12-14, 2018, Trabzon, Turkey.
-
Bohr Hamiltonian with a potential having spherical and deformed minima at the same depth, P. Buganu, R. Budaca, and A. I. Budaca, International Conference "NUCLEAR STRUCTURE AND RELATED TOPICS" (NSRT18), June 3-9, 2018, Burgas, Bulgaria.
-
Nuclear shapes for the critical point of the U(5) - SU(3) nuclear shape phase transition, P. Buganu, R. Budaca, and A. I. Budaca, Shapes and Symmetries in Nuclei: from Experiment to Theory (SSNET’18 Conference),
November 5-9, 2018, Gif-sur-Yvette, France